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Screening oral drugs for their interactions 
with the intestinal transportome via porcine 
tissue explants and machine learning

Yunhua Shi1,2,7, Daniel Reker    1,2,3,7, James D. Byrne1,2,4,5, Ameya R. Kirtane    1,2, 
Kaitlyn Hess1, Zhuyi Wang1, Natsuda Navamajiti    1,6, Cameron C. Young    2, 
Zachary Fralish3, Zilu Zhang3, Aaron Lopes1, Vance Soares1, Jacob Wainer    1, 
Thomas von Erlach1, Lei Miao1, Robert Langer    1 & Giovanni Traverso    1,2,4 

In vitro systems that accurately model in vivo conditions in the 
gastrointestinal tract may aid the development of oral drugs with greater 
bioavailability. Here we show that the interaction profiles between drugs 
and intestinal drug transporters can be obtained by modulating transporter 
expression in intact porcine tissue explants via the ultrasound-mediated 
delivery of small interfering RNAs and that the interaction profiles can 
be classified via a random forest model trained on the drug–transporter 
relationships. For 24 drugs with well-characterized drug–transporter 
interactions, the model achieved 100% concordance. For 28 clinical drugs 
and 22 investigational drugs, the model identified 58 unknown drug–
transporter interactions, 7 of which (out of 8 tested) corresponded to 
drug-pharmacokinetic measurements in mice. We also validated the model’s 
predictions for interactions between doxycycline and four drugs (warfarin, 
tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay 
and the analysis of pharmacologic data from patients. Screening drugs 
for their interactions with the intestinal transportome via tissue explants 
and machine learning may help to expedite drug development and the 
evaluation of drug safety.

Drug transporters are membrane proteins that have been recognized 
as major determinants of the pharmacokinetics, biodistribution and 
efficacy of drugs1–3. A major focus in drug discovery and develop-
ment is to understand the transportome4 and the interaction between 
drugs and their transporters5, specifically in the context of their role in 
determining intestinal absorption of orally administered medications. 
Current systems used to study transporter–drug interactions include 
engineered cell monolayers and vesicular assays6–9. Such simplified 

models often fail to accurately capture the complex and dynamic cel-
lular context and do not capture differences in transporter-expression 
levels or the cellular heterogeneity of native tissues10–14. Knockout and 
humanized mice can act as models with higher physiological relevance, 
but low throughput and high cost limit their broader application7,15. 
Importantly, none of these approaches enable the controlled and 
fine-tuned manipulation of individual expression levels to study the 
complex interplay between transporters16 and their joint impact on the 
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these two technologies (Fig. 1) enabled the accurate characterization of 
all 28 tested drugs and led to the discovery of nine previously unknown 
transporter–drug interactions. The system also accurately identified 
the transport profile of 22 investigational compounds, highlighting 
the relevance of such effects for future drug discovery and develop-
ment. We validated seven of the newly identified substrate relation-
ships in vivo, supporting the predictive capacity of our efficient and 
cost-effective system. Moreover, we tested the clinical relevance of 
novel drug–drug interactions identified through our system and vali-
dated four novel drug–drug interactions that led to significantly higher 
drug levels in patients. Taken together, the system couples machine 
learning and primary tissue engineering to enhance drug discovery and 
development by accurately predicting transporter–drug interactions.

Results
Establishing the transportome inter-connectivity
To understand the potential for a drug to be transported by multiple 
transporters, we first evaluated the incidence of known drug trans-
porter pairs with shared substrates. To this end, we extracted all drug 

bioavailability of medications. In silico models are becoming increas-
ingly accurate and are an important tool to streamline the experimental 
identification of transporter–drug interactions17–20, but there is a lack 
of explicit integration of computational tools and experimental sys-
tems21. Such set-ups would enable feedback-driven machine learning 
to continuously improve predictions and models22, which is of par-
ticular relevance for the prediction of transporter–drug interactions, 
given the variance and heterogeneity of available data that continue 
to be acquired through simplified and distinct model systems without 
standardized protocols, controls or readouts21,23,24.

Our system uses intact, ex vivo porcine tissue to model intesti-
nal drug transport in a physiologically relevant context with similar 
cellular structure and protein expression to what would be found in 
humans25–28. Several studies have shown the application of porcine 
intestinal tissue as a model for human drug-transport studies29–34. 
Therefore, we believe that this tissue-based system provides a compro-
mise between the simplicity of cell-based assays and the physiological 
relevance of animal models. The machine-learning model was trained 
on a large dataset that we curated. Together, the new system linking 
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Fig. 1 | Transportome interactions and schematic of the closed-loop pipeline 
to predict and validate drug transport profiles. a, Relying on DrugBank data, 
we estimated that the 149 currently known drug transporters form a complex 
interaction network with a total of 1,891 known transportome interactions, 
that is, pairs of drug transporters with at least one shared substrate. The 
transportome interactions span a complex and disjointed network, with multiple 
classes of transporters sharing multiple substrates while also not sharing 
substrates with other drug transporters. The three transporters with the largest 
number of known substrates are highlighted in colour: red, P-gp; orange, BCRP; 
yellow, MRP2. b, Known interactions between the three drug transporters P-gp, 
BCRP and MRP2. Circle fraction is indicative of relative number of substrates 
per transporter, corresponding to 186, 70 and 43 substrates annotated for P-gp, 
BCRP and MRP2 in DrugBank 5.0, respectively. Shared substrates are connected 
through proportional surfaces. P-gp and BCRP share 48 substrates, BCRP 
and MRP2 share 19, and P-gp and MRP2 share 24. In addition, 15 substrates are 

annotated to be shared by all three transporters (orange). c, We have curated a 
large database of drug transport interactions with 4,554 annotations for 2,261 
small-molecule drugs and screening compounds from three individual data 
sources (DrugBank, Metrabase, NCI-60) and additional, machine-learning-
guided literature search. We utilized these data to build a state-of-the-art random 
forest machine-learning model. The physical and chemical properties of a new 
potential drug are incorporated into a random forest-based machine-learning 
algorithm to generate predictions of the potential substrate relationship with 
various drug transporters. On the basis of the prediction report, a series of 
siRNA-induced drug transporter knock-downs are performed on an ex vivo 
porcine small-intestine tissue-based screening system. These ex vivo data were 
fed back into the machine-learning algorithm to further modify the database and 
improve the predictive performance. Identified substrate relationships were 
subsequently validated in vivo.
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transporter data from the DrugBank35 database and analysed the indi-
vidual transporters according to their shared substrates. DrugBank 
5.0 contains 149 distinct drug transporters that have a total of 917 
annotated substrates (Fig. 1a). The three transporters with the high-
est number of annotated substrates are the three efflux transport-
ers P-glycoprotein (P-gp, 186 substrates), breast cancer resistance 
protein (BCRP, 70 substrates) and multidrug resistance protein 2 
(MRP2, 43 substrates), and a total of 106 substrates are partially or 
fully shared between them (Fig. 1b). Overall, the DrugBank dataset 
contains a total of 1,891 transporter–transporter interactions, that 
is, pairs of transporters that have at least one shared substrate. This 
corresponds to 17% of the possible number of interactions, which 
shows that shared substrates are a common phenomenon but at the 
same time do not impact every possible transporter pair. This further 
shows that transporters possess a complex molecular recognition 
mechanism of substrates36,37 and emphasizes the need to develop 
advanced technology that enables the rapid and accurate profiling 
of these transporter–drug interactions.

A small interfering RNA-engineered ex vivo system enables 
the characterization of substrate transport in response to 
modulation of drug transporter expression
The drug transporters expressed within the small intestine have been 
studied extensively7,38,39. Briefly, three efflux transporters (P-gp, BCRP 
and MRP2) and three influx transporters (MCT1, SNAT2 and PEPT1) are 
expressed on the luminal side38,40. The basolateral side contains one 
efflux (ABCC3), one influx (OCT1) and one bi-directional transporter 
(OSTα/β) (Supplementary Fig. 1a). We hypothesized that porcine tis-
sue could be a viable model system to study these drug transporters 
given the similarity in gastrointestinal physiology between humans and 
pigs26 and the large degree of genetic homology between their drug 
transporters (Supplementary Fig. 1b). We confirmed a high similarity 
in the transporter expression levels between porcine and human small 
intestine tissue through reverse transcription polymerase chain reac-
tion (RT-PCR; Supplementary Fig. 1c) and western blotting (Supplemen-
tary Fig. 1d), except for ABCC3 and OSTα/β for which lack of available 
antibodies prohibited further analysis. In addition, other researchers 
have shown that first-pass metabolic enzymes are similarly expressed 
in humans and pigs41–43, which has established native porcine intestinal 
tissue as a workhorse in oral drug delivery research31,44.

To establish a drug transporter model using porcine small intestine 
tissue, we developed a small interfering RNA (siRNA) knock-down pro-
tocol for each transporter in our ex vivo culture system28. We designed 
siRNAs to target all major intestinal transporters and validated their 
knock-down capacity and specificity first in vitro using the porcine 
PK15 cell line (Supplementary Fig. 2). This preliminary screen was 
performed to select siRNA sequences with the best knock-down effi-
ciency. Subsequently, the capacity of these selected siRNAs to knock 

down their respective transporters after using ultrasound-mediated 
delivery to our ex vivo culture system was validated45,46 (Fig. 2a and 
Supplementary Figs. 3 and 4), and tissue viability, histologic analysis 
and permeability analysis through transepithelial resistivity meas-
urement as well as permeation evaluation were evaluated to confirm 
the absence of toxicity from ultrasound (Supplementary Fig. 5). This 
workflow enabled us to specifically target each drug transporter in the 
pig small intestine with a knock-down efficiency of twofold to tenfold 
while not impacting the expression of other transporters as validated 
through quantitative PCR (Q-PCR; Supplementary Fig. 5a) and western 
blotting (Supplementary Fig. 5b).

As our ex vivo system retained the intestinal submucosa, we were 
not able to study basal transporters directly; therefore, we chose to 
focus our investigation on the luminal drug transporters P-gp, BCRP, 
MRP2, PEPT1, and MCT1. If a molecule is transported by a specific 
transporter, its movement across the tissue should be impacted by 
selectively down regulating that transporter. To validate that our sys-
tem accurately captures this behaviour, we tested a total of 23 known 
transporter–drug relationships7,47. All investigated drugs showed a 
significant change in perfusion when their respective transporter was 
knocked down (Fig. 2b–d and Extended Data Fig. 1; P < 0.05, one-tailed 
Z-test; P < 0.01, two-tailed t-test with the exception of Rosuvastatin 
P = 2%). As a control experiment, we measured the change in perfu-
sion for 11 drugs that are known to not be transported by these trans-
porters7,48,49 and found that none of their perfusions was significantly 
affected (Fig. 2b–d and Extended Data Fig. 1; P > 0.05, one-tailed Z-test) 
as expected.

Next, we studied perfusion of drugs that are known to be sub-
strates for multiple transporters to enable the direct validation of our 
system to study the transportome of small molecules. Down regulat-
ing a single transporter did not impact drug perfusion in this case 
(Fig. 2), hinting at potentially synergistic and compensatory effects 
in the transportome network. To be able to delineate such effects, 
we aimed at down regulating multiple transporters simultaneously. 
We co-delivered two siRNAs targeting P-gp and BCRP with varying 
concentrations of each siRNA and noted that we were able to fine tune 
expression levels in a dose-dependent, linear fashion (Pearson r = 0.72 
and 0.96, Fig. 2e–f). We next studied how the simultaneous and gradual 
down regulation of transporter expression impacts drug perfusion. 
Perfusion of BCRP-specific substrates increased linearly with reduced 
BCRP expression (daunorubicin R = 0.7, 4-methylumbelliferone sulfate 
R = 0.81) but were not affected by altering P-gp expression (P > 0.28 
one-tailed Z-test at maximum siP-gp concentration; Fig. 2g). For sub-
strates of both transporters, down regulation of either individual 
transporter did not impact perfusion or only marginally at maximal 
siRNA concentration (Fig. 2h); however, even slight down regulation 
of both transporters strongly increased drug perfusion up to 160% or 
300% (Fig. 2h). These data highlight the ability of this system to capture 

Fig. 2 | Validation of the ex vivo drug transporter–drug interaction screening 
system. a, Schematic of the tissue engineering workflow. b–d, About 300 μl 
of 1 μM siRNA (in PBS) targeting P-gp (b), BCRP (c) and MRP2 (d) delivered 
to individual wells of the intestinal explant system through ultrasound. The 
fold increase of drug absorption is measured by either fluorescent reading or 
ultraviolet–visible absorption. For each drug, the data are collected from 62–72 
trials (n = 62–72) of tissue in four different pigs (m = 4). P values were determined 
by one-tailed Z-test. * P < 0.05, ** P < 0.01, *** P < 0.001. Lines indicate mean value, 
and error bars correspond to one standard deviation. See also individual raw 
data plot in Extended Data Fig. 3. e, Western blotting against P-gp and BCRP 
shows that the expression levels of the drug transporters are correlated with 
the concentration of dosed siRNA in the range of 0 to 25 μM. Same blot is also 
processed for loading control protein β-actin for quantitative analysis.  
f, A representative western blot; the relative expression level of each target after 
siRNA dosing is calculated using the band density ratio compared to control on 
a single image taken from one gel without further processing using ImageJ, and 

multiple gels have been prepared in parallel to arrive at replicates. The  
original image for each western-blot gel can be found in Supplementary  
Fig. 12. g, The relationship between fold increase in perfusion for BCRP-specific 
substrates daunorubicin and 4-methylumbebeliferone sulfate and the level of 
BCRP expression. The expression level of BCRP is calculated by western blot as 
shown in f, and the experiments were repeated for at least three times. The same 
analysis method was performed for each individual replicate to obtain statistical 
significance. h, The relationship between fold increase in perfusion of substrates 
(doxorubicin and topotecan) that are transported by two efflux transporters  
(P-gp and BCRP) and the expression level of each individual drug transporter 
when dosed with single siRNA. The green line indicates the relationship between 
fold increase of doxorubicin and topotecan to the expression level of P-gp and 
BCRP when co-dosing siP-gp and siBCRP with different concentrations. Data for 
f–h are pooled from three independent experiments. Lines indicate mean value, 
and error bars correspond to one standard deviation.
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the dynamic interplay and synergistic effects of multiple transporters 
that can compensate the loss of one of the two transporters.

Development of a machine-learning model for the rapid 
prediction of transporter–drug profiles
While our data indicated that we are able to knock down a set of trans-
porters to study the transporter profile of clinically relevant drug mole-
cules, the combinatorial explosion of necessary experiments prohibits 
exhaustive profiling. For example, investigating the full transportome 

profile for a single drug by creating all possible knock-down combina-
tions of the 149 known drug transporters would require more than 
700 tredecillion (7 × 1044) experiments. Given the established role 
of machine learning to streamline experiments, we set out to test 
whether a classification model could prioritize knock-down experi-
ments. We first validated that the ‘chemical similarity principle’ holds 
in our dataset by comparing the average nearest neighbour Tanimoto 
similarity of transporter substrates (0.53 ± 0.24) and their similarity 
to non-substrates (0.39 ± 0.18), which indicated that substrates share 
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significantly higher chemical similarity (unpaired Student’s t-test 
P = 3 × 10−58) that can be exploited to model the transporter–drug 
relationships (Supplementary Fig. 6a). Principal component analysis 
showed that transporter substrates occupy specific regions in chemical 
space (Supplementary Fig. 6b).

We specifically aimed to design a machine-learning model with 
maximal specificity (that is, high true negative rate) as such a model 
would enable the accurate identification of non-substrate relation-
ships, thereby preventing testing of non-substrates and preserving 
resources. High sensitivity (that is, high true positive rate) was not 
required as our ex vivo system eliminates any false-positive predic-
tions. We concentrated our machine-learning efforts on the three 
efflux transporters P-gp, BCRP and MRP2 given their significance 
for clinical drug transport as supported by having the greatest num-
ber of annotated substrates (Fig. 1a). We manually curated a train-
ing dataset mined from DrugBank35, Metrabase50 and the National 
Institutes of Health (NIH) screen NCI-60 (refs. 51,52). A random for-
est machine-learning model showed the highest specificity of up 
to 96%, indicating that it can accurately identify non-substrates to 
streamline experimental testing (Supplementary Table 1). We con-
firmed that the random forest architecture outperforms seven 
other machine-learning models trained on our data (Supplementary  
Fig. 7 and Supplementary Table 1), potentially due to the need for 
additional parameter optimization for other models or the lack of 
implicit feature selection except for tree-based learning approaches 
which performed best. As expected, adversarial Y-shuffling broke 
the relationship between chemical patterns and substrate relation-
ships and therefore collapses the model (Supplementary Table 2), and 
data ablation reduces model performance (Supplementary Table 3).  
We also refuted that the high performance is exclusively driven by 
analogue identification by showing that the model retained high pre-
cision in cluster-based cross validations (Supplementary Table 4).  
We recognized that our training data were slightly imbalanced and 
therefore tested the potential of 17 machine-learning techniques 
to augment our model for imbalanced data. None of these learning 
techniques improved the specificity of our model (Supplementary  
Fig. 7 and Supplementary Table 5). An analysis of the relative feature 
importance for these models highlights the importance of physico-
chemical properties of small molecules to predict substrate relation-
ships. This analysis also shows the need to consider different properties 
to make accurate predictions for the different studied transporter 
proteins (Supplementary Table 6).

To assess the performance of our model on external data, we 
predicted unknown transporter–drug relationships for our training 
molecules, thereby completing the transporter profiles for compounds 
that are only partially annotated in our data. We then manually screened 
the literature to validate or refute these predictions. Overall, 70% 
of these predictions were validated to be correct (Supplementary  
Table 7), where 58% were correct transporter–drug interactions, while 
42% were correct predictions of non-substrates. The ratio of substrates 
to non-substrates was much higher in the literature compared to the 
databases that we used, possibly hinting at reporting biases for posi-
tive results in the literature. The high performance of our model on 
these external data showcased the capability of our model to correctly 
identify both substrates and non-substrates even in cases where the 
underlying class distribution was distinct from the training data. We 
noted that accuracy correlated with predictive confidence (percent-
age of trees in our random forest ensemble that predict the molecule 
to be a substrate), with 80% of the high-confidence predictions being 
correct, while only 50% of low-confidence predictions were correct. 
This indicated that a confidence cut-off of 60% would allow us to define 
an applicability domain of our model with largely correct predictions, 
while predictions with lower confidence were insufficiently under-
stood. Conversely, insufficiently understood compounds provide 
an opportunity for model augmentation, as such poorly understood 

compounds can be expected to add knowledge to the model. We there-
fore followed an active learning strategy to specifically annotate predic-
tions with low confidence to generate an augmented dataset of 4,554 
transporter–drug relationships (Supplementary Table 8).

Machine learning and tissue engineering streamline the 
identification of substrate relationships for approved drugs 
and investigational compounds
We first aimed to assess whether our model could generate useful 
insights for approved drugs. To this end, we applied our machine- 
learning model based on the 4,554 transporter–drug relationships 
dataset to a panel of 28 model drugs that form a representative set  
of molecular structures with a wide range of intestinal perfusion  
abilities28. We exhaustively screened their transporter interactions 
with P-gp, BCRP and MRP2 through knock-down experiments. Overall, 
we found that machine learning and the experimental results agreed 
in 76.2% of the experiments, indicating that the rapid in silico predic-
tions enable experimental streamlining. As these approved drugs 
are established medications that have undergone ample pre-clinical  
and clinical investigation, we noted that half (57.1%) of their trans-
porter interactions can be found in the literature. This attests to the  
ability of our workflow to detect relationships that can also be identi-
fied via classical experimental and clinical workflows. Notwithstanding 
these previous efforts, our focused screen of 28 model drugs discov-
ered 9 currently unknown transporter–drug interactions that had not  
been reported previously (Supplementary Table 9), suggesting that 
our system can generate new transporter knowledge even for highly 
scrutinized molecules. Importantly, these findings could have immedi-
ate implications for patients receiving these medications.

Given these promising results for established medications, we 
next determined whether the system could also discover transporter 
profiles for investigational drugs. After adding the drug screening 
data to our database (Supplementary Table 8), the system predicted 
the transporter profile of 1,595 investigational, small-molecule drugs 
(DrugBank 5.0). Using these predictions, we classified all investiga-
tional drugs into eight categories: selective substrates for either P-gp, 
BCRP or MRP2; dual substrates for either P-gp/BCRP, P-gp/MRP2 or 
BCRP/MRP2; ‘super substrates’ that are substrates for all three drug 
transporters; and ‘super drugs’ with no predicted interaction and 
therefore no transport liability. We then selected the top three hits 
from each of these eight categories (with the exception of the P-gp/
MRP2 dual substrate gallopamil, given the commercial unavailability 
of the other top candidates), resulting in a validation set of 22 com-
pounds that we tested experimentally for their predicted transporter 
interactions. About 91% of our predictions were validated ex vivo  
(Fig. 3), covering all possible classes of transporter profiles. This con-
firmed the applicability of our workflow to preclinical drug develop-
ment and also further attests to the ability of the system to identify 
distinct types of transporter profile.

Feedback loop enables applicability domain expansion
As we had gone through multiple iterations of predictions and data gen-
eration with novel data added to the model, we set out to characterize 
the impact of these data to the model. We tracked five-times stratified 
tenfold cross validation as well as out-of-bag error performance of 
all our models (Supplementary Tables 10 and 11). The directed data 
augmentation through active learning led to slight improvements in 
sensitivity for all models while maintaining high precision. This could 
indicate that adaptive data augmentation can specifically improve 
weaknesses of a model according to certain performance characteris-
tics. The other screening data did not alter model performance, corrob-
orating previous results that inclusion of high-confidence predictions 
does not positively impact machine-learning models53,54. However, as all 
models are evaluated on distinct datasets, a direct comparison might 
not be a true reflection of their relative predictive power. We quantified 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-023-01128-9

Ex vivo result In silico result
b

Dihydroergotamine (+)-tartrate salt
(±)-Verapamil hydrochloride

Ibuprofen
Curcumin

Atorvastatin calcium salt trihydrate
Candesartan cilexetil

Warfarin
Quinine

Quinidine
Coumarin

Pamidronate disodium salt hydrate
Acyclovir

Furosemide
  Chlortetracycline

Doxycycline
Ergotamine D-tartrate

Labetalol hydrochloride
Danazol

Ketoprofen
Piroxicam
Ranitidine

Carbamazepine
Terbutaline

L-phenylalanine
Naproxen Sodium

(S)-(–)-propranolol hydrochloride
Loperamide

Nadolol 0

0.5

1.0

1.5

2.0
2.7

BCRP

0

0.5

1.0

a

c

MRP2

BCRP

P-gp

P-gp BCRP

MRP2

Multi

siR
NA siR

NA

siR
NA Ctr

In vivo validation

Candidate drug

Machine-learning
predictionDrug input

Prediction substrate
profile Ex vivo validation

Transporter-substrate
profile

0

si
Pg

p

Tr
ip

le

si
Pg

p

Tr
ip

le

si
Pg

p

Tr
ip

le

si
BC

RP

Tr
ip

le

si
BC

RP

Tr
ip

le

si
BC

RP

Tr
ip

le

si
M

RP
2

Tr
ip

le

si
M

RP
2

Tr
ip

le

si
M

RP
2

Tr
ip

le

si
Pg

p

D
ou

bl
e

Tr
ip

le

si
BC

RP

si
Pg

p

D
ou

bl
e

Tr
ip

le

si
BC

RP

si
Pg

p

D
ou

bl
e

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

D
ou

bl
e

Tr
ip

le

1

2

3

4

1, 0, 0

Fo
ld

 in
cr

ea
se

Aldosterone Berberine
Ebastine

***
***

P = 0.0203
*

*****
P = 0.9338

***
***
P = 0.0844

2.34E-0 0.0010 0.0036 9.15E-05 0.0006 1.68E-07

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0, 1, 0

Fo
ld

 in
cr

ea
se

Uric acid Asimadoline
Genistein

***
P = 0.0467

*

***

P = 0.9810

******
P = 0.9747***

0.9

1.0

1.1

1.2

1.3

0, 0, 1

Fo
ld

 in
cr

ea
se

Epigallocatechin gallate Epicatechin
Artemisinin

***
P = 0.3280

***
***

P = 0.1432

*** ***
P = 0.1502

***

0.255 0.0006 0.0006 7.97E-15 0.0023 2.51E-06 2.76E-06 0.0003 2.33E-06 6.71E-08 0.0006 3.49E-08
0.6

0.8

1.0

1.2

1.4

1.6

1, 1, 0

Fo
ld

 in
cr

ea
se

Canertinib Ranotinib
Pazufloxacin

***

P = 0.2946

***

***
***

P = 0.2446

P = 0.3196

*****

1.0
0

0.83
3.3E-0

5

6.41E-0
9

0.97
1.0

0
0.003

0.014
0.9623

0.4840

0.0013

3.53E-10

0

1

2

3

4

1, 1, 1

Fo
ld

 in
cr

ea
se

Belotecan

Aminopterin

SN-38

*

***
***

***

P = 0.0043
    **

0.583
0.0454

0.416
0

7.4
1E-0

5

0.0510

0.20
16

0.344
2.8

4E-17

0.921
0.986

0.314
4.31E-5

0

0.5

1.0

1.5

2.0

0, 0, 0

Fo
ld

 in
cr

ea
se

Parthenolide

Fosbretabulin

Chlorsufaquinoxaline

0.25
83

0.27
24

0.18
45

0.24
82

0.976
8

0.5657

0.9324

0.27
70

0.0526

0.12
30

0.6718

0.5584

1, 0, 1
Gallopamil hydrochloride

0

0.5

1.0

1.5

2.0

0, 1, 1

Fo
ld

 in
cr

ea
se

Isoquercetin Ethyl-6-phenylimidazo

Aminopterin

****** ******

***

***
P = 0.3853 P = 0.6052

P = 0.0326
*

1.0
0

1.0
0

5.87E
-0

6

1.5
7E

-0
7

0.314
0.671

4.14
E-11

0.0003

0.921
0.986

8.28
E-0

6

4.31E-5

he f g

i j k l

Fo
ld

 in
cr

ea
se

siRNA

d

Fo
ld

 in
cr

ea
se

P = 0.92550

***

0.7329 0.6133 0.0006 0.0003

0.8

0.9

1.0

1.1

1.2

1.3 ***

0, 0, 1

0, 1, 1

0, 1, 0
1, 1, 1

1, 1, 0

0, 0, 0

1, 0, 1

1, 0, 0

140

120

100

80

60

40

20

0

Pgp MRP2 BCRPPgp MRP2

si
BC

RP

D
ou

bl
e

Tr
ip

le

si
M

RP
2

si
BC

RP

D
ou

bl
e

Tr
ip

le

si
M

RP
2

si
BC

RP

D
ou

bl
e

Tr
ip

le

si
M

RP
2

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

si
Pg

p

si
M

RP
2

Tr
ip

le

si
BC

RP

Fig. 3 | In silico and ex vivo prediction and validation of drug–drug transporter 
interactions. a, Schematic of the combined workflow. Substrate data were 
curated and provided to the machine-learning algorithm. This algorithm was 
then used to predict drug transporter–drug interactions. Predictions were then 
subsequently validated on the ex vivo system by delivering the respective siRNA(s)  
via ultrasound to the porcine explant system. Top predictions are then further 
validated in vivo. b, Heat map of the fold increase of perfusion (left) upon drug 
transporter knock-down (P-gp, BCRP and MRP2, respectively) and confidence in  
potential transporter–drug interaction prediction (right) for 28 commercial drugs.  
An asterisk indicates a statistically significant increase in perfusion (left) or a 
predictive confidence >50% (right). c, Schematic of the different prediction 
categories considered here and described as binary code. In this code, 0 indicates a  
non-interaction, and 1 corresponds to interactions; the position of the number 
indicates the specific transporter, whereas the first number indicates P-gp inter-
actions, the second number indicates BCRP interactions, and the third number 
signifies the interaction with MRP2. d, Chord plot visualizes the predicted 

transporter–transporter relationships. Circle fraction is indicative of relative 
number of substrates per transporter. Shared substrates are connected through 
proportional surfaces. e–g, Fold increase in perfusion of top drugs that were 
predicted to interact with only one drug transporter when dosing predicted single 
siRNA (i.e., siP-gp in panel (e), siBCRP in panel (f), and siMRP2 in panel (g)) and triple 
siRNAs, respectively. h–j, Fold increase in perfusion of top drugs that were predicted 
to interact with two drug transporters when dosing single siRNA, two siRNA 
combined and triple siRNAs, respectively (i.e., siP-gp/BCRP in panel (h), siP-gp/MRP2 
in panel (i), and siBCRP/MRP2 in panel (j)). k,l, Fold increase in perfusion of top drugs 
that were predicted to interact with all three (k) or none (l) of the drug transporters 
when dosing each single siRNA and combined triple siRNAs, respectively. For plots 
e–l, the data were collected from 12 trials (n = 12) of tissue extracted from three 
different pigs (N = 3). P values for each condition were determined by one-tailed 
Z-test. P values for comparison between groups was determined by Student’s t-test 
with multiple test correction. * P < 0.05, ** P < 0.01, *** P < 0.001. Lines indicate mean 
value, and error bars correspond to one standard deviation.
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the number of high-confidence predictions of all models as a measure 
of applicability domain extension and found that the initial data aug-
mentation expanded the number of high-confidence predictions, while 
less directed data acquisition strategies did not positively impact model 
confidence (Supplementary Table 12)—fully corroborating previous 
results54. While the direct integration of machine learning and our 
experimental system holds potential for improving data acquisition, 
the continuous accumulation of distinct types of data could further 
show the value of this integrated model.

In vivo validation of novel transport associations
To validate the physiological relevance of the newly identified substrate 
relationships, we performed an in vivo pharmacokinetic study in Balb/c 
mice. Candidate drugs were delivered by oral gavage, and the resulting 
drug concentration in blood serum was determined for the following 
60 min (Fig. 4a and Supplementary Fig. 8) to capture the absorption 
phase of the pharmacokinetic curve. We compared the area under the 
concentration–time curve (AUC) when administering the candidate 
drugs to naive mice compared to mice in which we reduced the function 

of specific drug transporters by pre-treating the mouse through oral 
administration of known transporter inhibitors (verapamil for P-gp55, 
imatinib for BCRP56,57 or probenecid for MRP2 (ref. 58)). Analysis of 
relative AUCs revealed a significant increase in drug absorption for 7 
out of the 8 tested candidate drugs (P < 0.05, two-tailed Student’s t-test; 
Fig. 4b). Only carbamazepine did not show the expected effect, which 
might be explained by increased glucoronidation of carbamazepine 
induced by our transporter inhibitor probenecid59. These results sup-
port the predictive capacity of our approach and the transferability 
of acquired results into complex in vivo conditions and showcase our 
ability to generate actionable knowledge of drug transport liabilities 
for approved drugs. For example, doxycycline is a known substrate of 
P-gp and OAT1, but the newly discovered interactions with BCRP and 
MRP2 double the number of known transporters for this drug.

Identifying transporter-induced drug–drug interactions
We hypothesized that newly identified transporter substrate profiles 
might not only be relevant to understand and improve individual drug 
absorption but could also be the cause for clinically relevant drug–drug 
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Fig. 4 | Validation of novel drug–transporter interactions in vivo, and 
prediction, ex vivo discovery and clinical validation of transportome-derived 
drug–drug interactions. a, Experimental schematic for in vivo validation. 
IS, internal standard; PK, pharmacokinetics. b, In vivo pharmacokinetics of 
potential substrates identified from Fig. 3 on Balb/c mice. Drug transporter 
inhibitor (verapamil for P-gp, imatinib for MRP2 and probenecid for BCRP) was 
administered 15 min before drug via oral gavage, while for the control group,  

PBS was administered instead. The serum drug level was determined  
through LC-MS/MS, high-performance liquid chromatography and/or gas 
chromatography-mass spectrometry. n = 5 for each time point. Inserts show 
AUC comparison within 60 min time window after drug oral administration for 
potential substrate from a. P value was calculated based on one-way analysis of 
variance. *P < 0.05, **P < 0.01, ***P < 0.001.
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interactions when two medications compete for the same transporter. 
To gauge the potential magnitude of this challenge, we predicted the 
P-gp, BCRP and MRP2 substrate profiles for all small molecules found 
in DrugBank 5.0. We then defined potential drug–drug interactions as 
pairs of drugs that share at least one known or predicted transporter, 
given that an overlapping substrate or inhibitor relationship might 
alter transport kinetics for both substrates. By this definition, newly 
predicted transporter–drug relationships could cause up to 1,810,270 
potential novel drug–drug interactions that were not known based on 
previously known transporter–drug relationships (Fig. 5a). We realized 
that some of the substrate predictions had low predictive confidence, 
indicating a potential for a substantial number of both false-positive 
and false-negative predictions that might impact the total number of 
drug–drug interactions. When only focusing on confident predictions 
(confidence score >60%), we predict 303,626 drug–drug interactions, 
which corresponds to a tenfold increase over interactions based on 
currently known transporter relationships.

While these numbers are staggering, it is unknown whether these 
calculated substrate profiles are indeed predictive of altered drug 
uptake during co-administration of the identified pairs of drugs. We 
set out to validate some of the predicted interactions experimentally. 
We chose doxycycline as the primary test compound given its broad  
clinical use and that we had here identified and in vivo validated as a 
novel BCRP and MRP2 substrate (Figs. 3b and 4b). We then manually 
selected four candidate drugs that are known substrates of BCRP and 
MRP2 to study whether they could potentially interact with doxycy-
cline. We chose warfarin, tacrolimus, digoxin and levetiracetam as 
candidates for the following reasons: (1) close monitoring of warfarin 
through prothrombin time and international normalized ratio (PT-INR) 
levels and tacrolimus, digoxin and levetiracetam levels in the clinic 
enables the direct identification of potential interactions from clinical 

data; (2) they have narrow therapeutic windows which makes the  
identification of potential interacting drugs critical; (3) a considerable 
fraction of the patient population receive combinations of these drugs 
with doxycycline to treat their co-morbidities; and (4) while for tacroli-
mus there have been previous suggestions of potential interactions 
with doxycycline without a clearly identified mechanism60, the other 
three (warfarin, digoxin, levetiracetam) represent currently unknown 
interactions with doxycycline. As a first-line test, we conducted ex 
vivo perfusion experiments to test for changes in absorption when 
co-administering the candidates with doxycycline. All drugs except 
warfarin showed a significant increase in perfusion upon co-treatment 
with doxycycline (Fig. 5b; P = 0.19, 0.041, 0.002 and 0.009).

To assess the clinical relevance of these findings, we identified 
patients (n = 43–50) from the Mass General Brigham Research Patient 
Data Registry (RPDR) for which we could acquire data on their drug 
levels before, during and after doxycycline administration. We found 
a significant increase of all four tested drugs when co-administrated 
with doxycycline (P = 0.0001, 0.0413, 0.0004 and 0.0152), while 
levels returned to baseline after completion of doxycycline therapy 
(P = 0.0004, 0.009, 0.0017 and 0.024). We next modelled the effect 
of doxycycline concentration on the absorption of the interacting 
drugs with biopharmaceutical modelling. Due to the limited informa-
tion available about the receptor kinetics of doxycycline and BCRP 
except that of digoxin, we were only able to estimate digoxin’s maximal 
increase in serum concentration expected with inhibition of BCRP. 
Our modelling results suggested that the complete inhibition of BCRP 
can increase serum concentration of digoxin by ~62% (Supplementary 
Results and Supplementary Fig. 9), which is in good alignment with 
~50% increase in average serum concentrations in our retrospective 
clinical study. Although warfarin and tacrolimus are also metabolized 
through cytochrome P450 3A4, which might at least in part explain 
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Fig. 5 | Visualization of predicted drug–drug interactions through 
transportome profiles, and ex vivo validation and clinical data analysis 
of doxycycline interactions with warfarin, tacrolimus, digoxin and 
levetiracetam. a, Binary code as in Fig. 3. Drugs are clustered according to 
their transport profile. All drugs within one cluster are defined as interacting, 
and two clusters are connected by a grey area if the drugs across these clusters 
have the potential to interact through (partly) shared substrate relationships. 
Pairs further investigated are connected by a red line. b, The detailed ex vivo 
experimental procedure is described in Methods. Briefly, warfarin, tacrolimus, 
digoxin and levetiracetam were co-treated with doxycycline on our ex vivo swine 
tissue respectively to investigate changes in perfusion of the tested drugs. The 

tested drug concentrations were determined by LC-MS from the reservoir well. 
Detailed clinical trial and data analyses are described in Methods. Briefly, in 
patients (n = 43–50) undergoing warfarin, tacrolimus, digoxin or levetiracetam 
treatment, there were significant increases in PT-INR, serum tacrolimus trough 
levels, serum digoxin levels and serum levetiracetam levels, respectively, while a 
patient received a concomitant short course of doxycycline therapy, and PT-INR/
drug levels returned back to baseline after doxycycline clearance. Boxes indicate 
mean value, and error bars correspond to one standard deviation. * P < 0.05,  
** P < 0.01, *** P < 0.001. PBS, phosphate buffered saline; dox, doxycycline; Pre, 
prior to doxycycline treatment; Post, after doxycycline treatment.
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this interaction, digoxin and levetiracetam are not cytochrome sub-
strates or share any other known metabolic enzymes with doxycy-
cline. Although we cannot exclude that other unknown enzymes may 
play a role in this drug–drug interaction, we believe that the clini-
cal data combined with our ex vivo data provide good evidence for 
transporter-driven interactions. Importantly, with the exception of a 
moderate clinical warning for doxycycline–warfarin, none of the other 
combinations are currently recognized as known drug–drug interac-
tions. Therefore, these cases highlight the potential of our system to 
identify clinically relevant and previously unknown drug–drug interac-
tions with immediate implications for clinical practice.

Discussion
Drug transporters can be major determinants of the absorption, kinet-
ics and elimination of life-saving therapeutics. It is currently under-
recognized that drugs are substrates for multiple drug transporters, 
leading to complex transporter–drug interaction patterns that can 
drastically reduce bioavailability61,62, increase the risk of drug resist-
ance63 and exponentially increase the number of drug–drug interac-
tions64,65. Our data suggest that complex transport profiles involving 
more than one transporter are in fact common among both approved 
and investigational drugs (compare Figs. 1a,b and 3d). Therefore, under-
standing the effects of multiple drug transporters on a single com-
pound and characterizing the transportome is critical for preclinical 
drug development and clinical decision making.

We have here directly integrated machine learning with a screening 
system based on genetically engineered ex vivo tissue. Through direct 
integration, the machine-learning algorithm can prioritize experi-
ments while adaptively learning from the continuously acquired data. 
Through genetic engineering, we enabled the characterization of 
multi-transporter effects in a complex tissue context. Our data sug-
gest that compensating effects of multiple transporters can obscure 
individual transport interactions (Figs. 2h and 3h–k), which highlights 
the need for new experimental systems and provides an important 
caveat for a large fraction of the currently available substrate data that 
have been largely derived from simple model systems that do not take 
compensatory effects into account.

Our machine-learning model enabled us to streamline experi-
ments with high precision but low sensitivity. We identified that a por-
tion of the false predictions were likely occurring as a result of complex 
biological effects, such as additional drug–drug interactions between 
the tested drug carbamazepine and the control inhibitor probenecid. 
Another major reason for the false predictions might be caused by dif-
ferent experimental conditions under which the training data had been 
generated. Such changes in protocols can lead to different interpreta-
tions and thereby to conflicting information provided to the model. 
Tight integration of experiments and machine learning will serve to 
circumvent at least some of these challenges. In future, we expect that 
our system and other experimental set-ups can provide more detailed 
kinetic information, such as Michaelis–Menten constant (Km) values, 
which could further boost predictive power and the translational 
relevance of the approach.

Although the used tissues showed variation in siRNA efficiency 
and drug perfusion, as expected, and the observed fold changes were 
not direct measurements of pharmacokinetic differences in vivo, we 
confirmed that our system provides physiologically relevant data, 
with all 24 drugs with clinically relevant transport profiles showing 
the expected behaviour (Fig. 2b–d) and with 87.5% concordance of 
our predictions in the in vivo Balb/c mouse model (Fig. 4). Neverthe-
less, inter-species differences in substrate relationships and enzyme 
homology will continue to pose important challenges for work in this 
area. In the future, bypass surgeries and donors might provide access 
to human tissue, which could circumvent species differences, enable 
the detailed analysis of personal variations66 and generate important 
data for personalized drug delivery. Similarly, interactions of additional 

transporters and other metabolic enzymes across different tissues will 
have to be integrated in future systems. With increasingly available 
data, tissue and genetic tools, we expect to expand our system to other 
enzymes, organs and pathways.

Our ability to rapidly identify clinically relevant drug interac-
tions from millions of possible pairings hints at the potential power 
of the described system and extensions thereof, which could be easily 
and rapidly deployed into current drug discovery, development and 
delivery pipelines. Approaches such as this show that combinations of 
technologies including machine learning and tissue engineering can 
accelerate drug and formulation development by prioritizing drug 
candidates and formulations while mitigating the risks of the develop-
ment of drug resistance and of unexpected drug–drug interactions.

Methods
Transportome interaction graph
DrugBank 5.0 was downloaded in XML format, and all DrugBank entries 
with at least one known transporter were extracted in Python 2.6. For 
every such entry, the list of known transporters per entry was extracted 
and stored in a numpy array. These lists were then processed to iden-
tify the total number of substrates per transporter and the number of 
shared substrates per transporter pair, which were converted into an 
adjacency matrix and imported into Gephi 0.9.2. In this graph, every 
node corresponds to a drug transporter, and two nodes are connected 
if and only if the corresponding two drug transporters share at least 
one known substrate according to DrugBank 5.0. The node size was 
determined from the total number of known substrates per transporter, 
using a logarithmic interpolation to ensure visibility of all nodes. Edge 
thickness was determined from the number of shared substrates and 
scaled linearly. Node position was determined using the Fruchterman 
Reingold layout algorithm. Chord charts to highlight the substrate sets 
for P-gp, BCRP and MRP2 were generated using the R library circlize 
and further processed in Inkscape (v.0.92).

Transport database
Data for human transporter substrates were extracted from Drugbank 
5.0 and Metrabase 1.0 and from the NIH screen NCI-60 for P-gp, BCRP 
and MRP2. All these datasets provide independent, expert curated, 
binary class data on the substrate/non-substrate relationships for the 
investigated transporter. The data were not further filtered for specific 
experimental protocols or readouts. Annotations were removed if 
contradicting information was present within one database. For the 
NIH screening data, we followed previously published and validated 
protocols to correlate treatment efficacy of various cytotoxic drugs 
against different cell lines with drug transporter expression levels for 
these cell lines. Briefly, if there is a sufficient anti-correlation (Pearson 
correlation coefficient less than −0.2) between transporter expres-
sion levels and cytotoxic effects of the compound, the compound 
is assumed to be a substrate of the transporter under investigation; 
otherwise it can be assumed not to be transported by the specific 
transporter. To reflect our confidence in the annotations, we priori-
tized annotations in DrugBank over Metrabase annotations, and we 
prioritized DrugBank and Metrabase annotations over data extracted 
from the NIH screen NCI-60. Compound identity was determined using 
a Morgan fingerprint (2048 bits, radius 4) with a Tanimoto similarity 
threshold of 0.95. For initial data augmentation, we used our Random 
Forest machine-learning model based on these data to predict the 
missing annotations, that is, substrate relationships for compounds 
that were included because of their relationship to other transporters. 
Manual literature research for randomly selected predictions showed 
that 70% of the high-confidence predictions (substrate probability 
score >60% or <40%) were correct, while only half of the low-confidence 
predictions (40% < substrate probability score < 60%) were correct. We 
followed an active learning strategy to manually augment the dataset 
for these low-confidence predictions by comprehensively scanning 
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the literature for more information on compounds that were predicted 
with low confidence and annotate them in our dataset. This led to our 
larger, augmented training dataset. After screening of our model drug 
library, we considered all drugs with statistically significant changes in 
perfusion to be substrates of the investigated transporters, and these 
data were subsequently added to the third generation of our database. 
The final results for the investigational drugs were subsequently added 
in the same manner. The number of substrates/non-substrates in these 
datasets are included in Supplementary Table 8, and the performance 
of models trained on these datasets is reported in Supplementary 
Tables 10 and 11.

Machine-learning model
Compounds from the training database were described using Morgan 
fingerprints (radius 4, 2,048 bits). The machine-learning model was a 
Random Forest Classifier (scikit-learn) using 500 tree estimators and 
no threshold on the number of included descriptors. Model quality 
was estimated retrospectively using five-times stratified tenfold cross 
validation with pre-shuffling to ensure randomization of training and 
test sets. For model comparison, we also implemented Gaussian naive 
Bayes, kNN (k = 3), a decision tree, a multilayer perceptron neural net-
work, a linear support-vector machine and extra randomized trees (all 
scikit-learn with default parameters). In addition, we implemented two 
deep models: a Message Passing Neural Network and Path-Augmented 
Graph Transformer Network (both DeepChem with default param-
eters). For cluster-based cross-validation, we used k-means (k = 50) 
clustering based on Molecular ACCess Systems (MACCS) key fin-
gerprints (rdkit v.2020.09.1) to group our database and perform 
leave-one-cluster-out cross-validation (scikit-learn v.1.0.2). In addition, 
we tracked out-of-bag errors of our random forest models on the dif-
ferent databases. We also tested the integration of class-based instance 
weighting (scikit-learn) and of all 16 up-sampling and down-sampling 
strategies in the Python imblearn library to further improve the per-
formance of our models, but none of these imbalanced learning tech-
niques improved the specificity of our model (Supplementary Table 4).

Prediction of investigational drugs
Investigational drugs were extracted from DrugBank by selecting 
compounds categorized as investigational but not in any of the other 
categories (for example, approved or withdrawn), and compounds that 
were part of the training set were eliminated. This led to a total number 
of 1,594 investigational drugs with unknown transport profiles. Using 
our machine-learning model, we predicted the confidence score for 
each of these compounds to be transported by P-gp (s1), BCRP (s2) or 
MRP2 (s3). The confidence of a substrate prediction was calculated as 
the number of trees predicting the molecule to be a substrate divided 
by the total number of trees in our random forest ensemble. A molecule 
was predicted to be a substrate if it has a confidence score of at least 
50%; otherwise it was predicted to be a non-substrate. This resulted 
in three confidence scores s1, s2 and s3, each ranging from 0.0 to 1.0. 
We then ranked compounds according to how closely their predicted 
transport profile (s1, s2, s3) would resemble any of the 23 = 8 different 
idealized profiles, specifically drugs that would not be transported by 
any of the three transporters (0, 0, 0); selectively transported drugs 
(1, 0, 0), (0, 1, 0), (0, 0, 1); drugs that would be transported by any pair 
of investigated transporters (1, 1, 0), (1, 0, 1), (1, 1, 0); and drugs that 
were predicted to be transported by all three transporters (1, 1, 1).  
By utilizing the Euclidean distance between the predicted profile 
(s1, s2, s3) and any of these idealized profiles, we generated a total of 
1,594 × 8 = 12,752 rank scores.

Cell culture and short hairpin RNA and siRNA transfection
The Sus scrofa kidney epithelial cell line PK15 was gifted by George 
Church’s lab at Harvard University and cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, Invitrogen), high glucose supplemented with 

10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin 
(Invitrogen), as suggested by the commercial protocol. Cells were 
maintained at 37 °C in an incubator with 5% CO2 supplement. Short 
hairpin RNA and siRNA transfection was delivered into PK15 cell by 
standard lipofectamine 2000 kit (Invitrogen) according to the manu-
facturer’s protocol.

Tissue dissection and preparation
Pig tissue was sourced from local slaughterhouses (that is, Leman 
& Sons, Hilltown Pork and Blood Farm). Tissue was procured from 
domestic pigs (S. scrofa) that were 6 months old and had a body weight 
between 140 lb and 200 lb. The tissue is prepared according to previ-
ous described protocols28. Briefly, the jejunum of the small intestine 
tissue was isolated from the intact gastrointestinal tract immediately 
after euthanasia and dissected longitudinally. The tunica muscularis 
was removed and the tissue sliced into pieces of approximately 150 mm 
in length. Tissue that contained Peyer’s patches was eliminated in this 
study. A series of washes with PBS supplemented with 5% antibiotic–
antimycotic solution (Thermo Fisher Scientific) was applied to the tis-
sue until clean under sterile conditions. Then, the tissue was mounted 
on the GI tissue robotic interface system (GI-TRIS) filled with a PBS 
5% antibiotic–antimycotic solution and cultured at 37 °C incubation 
with 5% CO2 supplement. The tissue dissection and preparation were 
performed within 30 min and immediately submitted for siRNA treat-
ment as described below.

Ultrasound siRNA delivery
siRNA duplex solution (that is, P-gp, BCRP, MRP2, SNAT2, Pept1, MCT1, 
OSTa and ABCC3) was diluted into PBS solution to a final concentra-
tion of 1 μM. For a 48-well GI-TRIS, 300 μl of siRNA solution was added 
into each well, and the siRNA was delivered to tissue through a 12-head 
40 kHz ultrasound device by applying 5 s intervals for 1 min with 30% 
amplitude as previously described45,46. Tissue was cultured for 24 h 
before the perfusion assay. We confirmed viability and integrity of the 
tissue using standard assays of cell viability, ATP and histology, and by 
measuring perfusion of dextran and transepithelial/transendothelial 
electrical resistance (TEER) before and after the ultrasound treatment 
(Extended Data Fig. 1).

Western blotting
Tissue was dissected and snap frozen in liquid nitrogen. Every 1 mg of 
tissue sample was homogenized in 100 μl of RIPA buffer supplied with 
protease inhibitor (Roche) by Berkin 24-cycle homogenizer. After 
centrifugation, the protein concentration from the supernatant was 
determined by BCA assay (Pierce) according to the manufacturer’s pro-
tocol. A total of 100 μg of protein was loaded on each lane for western 
blotting. The primary and secondary antibody working concentration is 
summarized in Supplementary Table 13. Blots were imaged with Bio-Rad 
Universal Hood II Molecular Imager (1312M) with chemiluminescence 
method. Contrast setting was set to auto-contrast for all images.

GI-TRIS design and manufacture
A 48-well GI-TRIS for interfacing with explanted porcine small intestine 
was designed and fabricated based on modifications from previous 
work28. The device consists of a bottom reservoir plate and an upper 
load plate. Both plates were made by laser cutting (Universal Laser 
Systems VLS6.60) a standard 48-well plate outline and well pattern 
(Corning 48-well plate, transparent) as well as magnet holes onto 
an acrylic sheet (McMaster–Carr 1/4 inch thickness). Neodymium 
magnets (K&J Magnetics Cylinder, 3/16 inch × 3/16 inch, N52, NI) were 
press fitted into the magnet holes of both plates. Seal film (Thermo) 
was applied to seal the bottoms of the wells of the reservoir plate, and 
PBS solution was loaded into each well. Then, tissue was placed on top 
of the reservoir plate, and the upper load plate was laid on top of the 
tissue. The magnets were oriented to align and attract the two plates 
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together, ensuring a strong seal between the wells. The concept dem-
onstration of the device is shown in Fig. 2a. Design details are provided 
in Supplementary Fig. 3.

Drug preparation, perfusion and detection
For the ex vivo perfusion study, the detection of each drug is based on 
either fluorescence or absorbance measurements according to the 
literature. A 1 mg ml−1 drug stock was prepared for each drug in PBS 
(pH 7.4). For water-insoluble drugs, a final concentration of DMSO 
in PBS was used to solubilize drugs. We centrifuged samples before 
further testing to remove any insoluble residues. Absorbance measure-
ments confirmed the absence of any large aggregates (Supplementary  
Fig. 10). Drug solutions were then added to the tissue, and we measured 
perfusion after 1 h incubation as described in a previous publication28. 
We quantified perfusion through measurement of standard curves 
(Supplementary Fig. 11) and ensured that the detected drugs are in 
the linear range of the calibration curves. ‘Fold increase’ was defined 
as the ratio of amount of perfused drug through siRNA-treated tissue 
to amount of drug perfused through non-treated tissue (PBS control). 
Therefore, a fold increase of 1 indicates no difference in drug perfu-
sion and therefore no role of the transporter. A detailed drug list, 
preparation methods, and detection parameters is summarized in 
Supplementary Tables 9 and 14–17.

In vivo pharmacokinetic analysis of predicted drug 
transporter substrates
All animal procedures were conducted in accordance with protocols 
approved by the Massachusetts Institute of Technology Committee 
on Animal Care. For in vivo pharmacokinetic evaluation, female Balb/c 
mice aged between 10 and 12 weeks were used in this study. For each 
studied drug, two groups were included, with three time points (15, 30 
and 60 min)—each time point contained five mice for each group. The 
control group was designed to obtain a baseline of absorption for the 
investigated drug in which no specific drug transporter inhibitor was 
used. For the experimental group, drug transporter-specific inhibitors 
were pre-administered through oral gavage 15 min before the adminis-
tration of the investigated drugs. For each time point, 1 ml of blood was 
drained from the mice after oral gavage administration. The blood was 
further treated by centrifugation, then by protein precipitation with 
acetonitrile in preparation for liquid chromatography tandem mass 
spectrometry (LC-MS/MS) analysis.

RT-PCR and Q-PCR
RNA from cell and tissue were extracted with the Trizol extraction 
method and converted into complementary DNA according to the 
manufacturer’s protocol (Qiagen RNA extraction kit and AB high fidel-
ity cDNA synthesis kit), followed by ultraviolet–visible quantification. 
The detection of each target was achieved by PCR, agarose electropho-
resis and SYBR Green Q-PCR detection method with specific primers 
listed in the Supplementary Information (Supplementary Tables 18 and 
19). All gels were detected with Bio-Rad Universal II Molecular Imager 
and processed with ImageJ (v.1.52p) for any quantitative analysis.

Liquid chromatography and mass spectrometry analysis
Samples were analysed via ultra-performance LC-MS/MS (UPLC-MS/
MS). For each time point, 500 μl of mice serum was collected and 
underwent standard liquid extrusion before LC-MS/MS analysis (see 
details in Supporting Information). Analysis was performed on a 
Waters ACQUITY UPLC-I-Class System aligned with a Waters Xevo–
TQ-S mass spectrometer (Waters). Liquid chromatographic separa-
tion was performed on an Acquity UPLC Charged Surface Hybrid C18 
(50 mm × 2.1 mm, 1.7 μm particle size) column at 50 °C. The mobile 
phase consisted of aqueous 0.1% formic acid, 10 mM ammonium for-
mate solution (mobile phase A) and acetonitrile containing 10 mM 
ammonium formate in a 0.1% formic acid solution (95:5 v/v) (mobile 

phase B). The mass spectrometer was operated in the multiple reaction 
monitoring mode. Sample introduction and ionization was done by 
electrospray ionization in the positive and negative ionization mode. 
MassLynx 4.1 software was used for data acquisition and analysis. The 
drug concentration for each sample was calculated from a standard 
linear curve generated by standard sample and internal standard. The 
mobile phase had a continuous flow rate of 0.60 ml min−1 using a time 
and solvent gradient composition. The detailed analytical procedure 
and internal standard preparation for each compound can be found in 
the Supporting Information.

Clinical trial design and data analysis
Institutional review board approval from Partners Healthcare was 
obtained before any work. Using the Partners RPDR, we retrospectively 
identified patients on warfarin, tacrolimus, digoxin and levetiracetam 
therapy who received a short course of doxycycline therapy for an 
acute infection. All patients were treated at Massachusetts General 
Hospital or Brigham and Women’s Hospital between January 2010 and 
December 2019. For patients on warfarin therapy, PT-INR values were 
recorded for the following time periods: 3 months before doxycycline 
therapy to establish a stable baseline, during doxycycline therapy, 3 days 
post-doxycycline therapy and 3 months post-doxycycline therapy. For 
patients on tacrolimus therapy, serum tacrolimus trough levels were 
recorded for the following time periods: 3 months before doxycycline 
therapy to establish a stable baseline, during doxycycline therapy, 1 day 
post-doxycycline therapy and 3 months post-doxycycline therapy. For 
patients on digoxin therapy, serum digoxin levels were recorded for 
the following periods: 1 year before doxycycline therapy to establish 
a stable baseline, during doxycycline therapy, 1 day post-doxycycline 
therapy and 1 year post-doxycycline therapy. Lastly, for patients on 
levetiracetam therapy, serum levetiracetam levels were recorded for the 
following periods: 1 year before doxycycline therapy to establish a stable 
baseline, during doxycycline therapy, 1 day post-doxycycline therapy 
and 1 year post-doxycycline therapy. The mean values for these cohorts 
were calculated and compared using a paired T-test between cohorts.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw and analysed datasets generated during the study are available 
for research purposes from the corresponding author on reasonable 
request.

Code availability
All training data and code used for machine learning and to make 
predictions are available on GitHub at https://github.com/RekerLab/
Transportome.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Tissue viability assay and H&E histology staining to 
assess the safety and toxicity effect of ex vivo culture and low-frequency 
ultrasound on pig small intestine. ATP and CellTiter-Glo assay were performed 
on ex vivo tissue cultured tissue with different time points to monitor the 
metabolic activity (a) and viability (b) of sliced tissue. c) ATP assay on ex vivo  
tissue at different ultrasound conditions to monitor damage caused by 

ultrasound delivery. d) TEER and FITC-labeled Dextran permeability assays 
to evaluate the possibility for changes in tissue permeability in response to 
low-frequency ultrasound treatment. In all experiments, three separate animal 
tissues were included and four repeats were performed for each tissue  
(n = 12). e) H&E histology staining using fresh tissue, tissue after a short 
ultrasound treatment, and tissue after a prolonged ultrasound treatment.
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Extended Data Fig. 2 | Validation of the ex vivo system for fold decrease of substrates/non-substrates of PEPT1 (A) and MCT1 (B) through the siRNA-mediated 
knock down of drug transporters of GI-TRIS. Perfusion decreases for substrates because these enzymes are influx transporters.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Original data for substrate perfusion with siRNA 
treatment in the ex vivo system. For each drug, the data is collected from 
62–72 trials (n = 62–72) of tissue in four different pigs (m = 4). For siP-gp treated 
samples, Colchicine, Irinotecan, Loperamide, Nicardipine and Ranitidine are 
drug transporter specific substrates, while Carbamazepine, Chlorpheniramine, 
and Doxorubicin are non-specific substrates. For siBCRP treated samples, 

4-methylumbelliferone sulfate, Daunorubicin, Mitoxantrone, Pitavastatin, and 
Rosuvastatin are BCRP specific substrates, while Doxorubicin, LysoTracker 
Green, and Rhodamine 123 are non-specific substrates. For siMRP2 treated 
samples, Etoposide, Irinotecan, Olmesartan, Para-aminohippurate, and Valsartan 
are MRP2 specific substrates, while Colchicine, Digoxin, and Nitrofurantoin are 
non-specific substrates.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We collected data from DrugBank (5.0), Metrabase (v 1.0) and the NIH NCI-60 dataset. Data were processed with a custom data-science 
workflow implemented in KNIME (version 4.1.2) and fully described in Methods. All data are available from GitHub at https://github.com/
RekerLab/Transportome.

Data analysis Data were analysed using Prism (version 7) and using Python (2.6). Machine learning was performed in scikit-learn and DeepChem, and all 
code to perform model training and evaluation is available from GitHub at https://github.com/RekerLab/Transportome.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Sex and gender were not identified in the retrospective analyses.

Population characteristics We retrospectively identified patients on warfarin, tacrolimus, digoxin and levetiracetam therapy who received a short 
course of doxycycline therapy for an acute infection. All patients were treated at Massachusetts General Hospital or Brigham 
and Women’s Hospital between January 2010 and December 2019. 

Recruitment Patients were retrospectively identified through the Partners Research Patient Data Registry. Informed consent was waived 
owing to the retrospective nature of the studies. 

Ethics oversight IRB exempt by Partners Healthcare (protocol #2019P003506).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For experiments involving the ex vivo validation of interactions between drug transporters and known inhibitors, a total of 62–74 replicates 
from 4 distinct pig tissues were chosen on the basis of minimal requirements for obtaining meaningful statistical results.  
 
For the ex vivo screening of drug-transporter interactions with 28 commercial drugs, a total of 12 replicates from 4 different animals are 
included. This decision was based on minimal requirements for obtaining meaningful statistical results. 
 
For the in vivo mice experiments of drug–drug interactions via targeting the same drug transporter, the n = 5 for each time point was decided 
according to the current standard for pharmacokinetics in mice. 
 
For the in vivo clinical data, each condition contains a range of 43–50 patients. This number was decided on the basis of both the standard in 
achieving a statistically significant result and the size of the clinical database.

Data exclusions For replicates, when leakage was observed on plates or wells, the corresponded data points were excluded. Otherwise, all data were included 
in the analysis. 

Replication Each experiment was repeated in multiple animals with various number of replicates (between 3 to 5 animals per experiment).  The number 
of animals and replicates are all indicated in the text.

Randomization The animals were assigned randomly to experimental and control groups. 

Blinding The design, execution and data analyses of this study were performed by different individuals to make sure that they were blinded to the 
data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used P-gp LSBio (aa863-912) 1:250 Rb 

BCRP abcam (ab63907) 1:1000 Rb 
MRP2 abcam (ab110740) 1:500 Rb 
MCT1 abcam(ab90582) 1:500 Rb 
SNAT2 abcam (ab90677) 1:1000 Rb 
OST-a abcam (ab103442) 1:500 Rb 
PEPT1 santa curze (sc-373742) 1:1000 Ms 
OCT1 abcam (ab180749) 1:500 Rb 
ABCC3 sigma aldrich (SAB2100011); LSBio (LS-C829592); abcam (ab232971) 1:250-1:1000 Rb 
GAPDH abcam (ab9484) 1:2000 Ms 
Actin abcam (ab8227) 1:2000 Rb 
anti-mouse (HRP) abcam (ab6728) 1:3000 Rb 
anti-rabbit (HRP) abcam (ab6721) 1:1000 Gt

Validation Product anti-BCRP(abcam: ab63907) has been stated by the Abcam website to react with pig BCRP r protein for western blotting 
application. Product anti-GAPDH (abcam: ab9484) was validated by Abcam to react with pig liver tissue with western blot. Product 
anti-PEPT1 (santa curze, sc-373742) was reported on Santa curze website for detection of porcine intestinal PEPT1 with WB. Product 
anti-MRP3 (abcam, ab232971) was validated by ABcam for reacting with pig liver lysate detected by WB.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) PK15 (pig), gifted by George Church.

Authentication None of the cell lines were authenticated.

Mycoplasma contamination The cell lines were not tested for mycoplasma contamination, but no indication of contamination was observed.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals 10–12-weeks-old female Balb/c mice from Charles River and The Jackson Laboratory.

Wild animals The study did not involve wild animals.

Reporting on sex Female mice. Porcine tissues were of mixed gender.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All animal procedures were conducted in accordance with protocols approved by the Massachusetts Institute of Technology 
Committee on Animal Care. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration We carried out a retrospective study. Institutional Review Board (IRB) approval from Partners Healthcare was obtained prior to any 
work. 

Study protocol See 'Clinical trial design and data analysis' in Methods.

Data collection We retrospectively identified patients on warfarin, tacrolimus, digoxin and levetiracetam therapy who received a short course of 
doxycycline therapy for an acute infection. All patients were treated at Massachusetts General Hospital or Brigham and Women’s 
Hospital between January 2010 and December 2019. 

Outcomes We found a significant increase of all four tested drugs when co-administrated with doxycycline, with the levels returning to baseline 
after completion of doxycycline therapy. More information and context is provided in Results.
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